Platform: z/0S

Application Development

ShenyIVISIEarsen)

Kyndryl

Kyndryl, zCloud Sales

NOtES: This presentation divulges discoveries and recommendations from various
SQL performance review assignments. See if you have similar SQL
performance issues and get the instructions on how to fix them. Issues
discussed include non-optimal index design, access paths gone wild, Stage
2 predicates, misuse of SQL, excessive sorting, delayed filtering, lack of
implementation of powerful new SQL features.

Skills Taught:

*Be able to determine where to use what SQL features, for example, can
identify when to use joins versus subqueries and vice versa.

Advanced SQL — Sheryl M. Larsen, Inc.

Notes:

We deploy and
manage a multi-tiered
service delivery
model allowing us to
balance client needs
and economics for
hundreds of
Mainframe and
zCloud clients
worldwide

kynd

Confidential

[orae |
* Service that needs to be = Service that needs to be * Service that can be
delivered from the same) delivered from the same 4. standardzed to achieve
country continent e maximum cost savings

Similar time zone
Similar culture

= Processing of sensitive
data

Legal restrictions

Poland, Czech
Republic &
Hungary
>1100 people

Mainframe Fact

Kyndryl MF MIPS under
management= 6.1M MIPS is
more than all of our
competitors combined

All Top Competitors
Combined = 6M MIPS

e Client Innovation Centers (CICs)

O.ORDERID, C.CUSTOMERID, '
B.BILL, SUM(B.AMOUNT) AS TOTAL

% FROM ORDER O, CUSTOMER C, BILL B
¥ WHERE B.DATE > ‘01-01-2017" p

AND O.ODERID = C.ORDERID ,
AND C.CUSTOMERID = B.CUSTOMERID |
| GROUP BY
| HAVING TOTAL > 100000
| ORDER BY TOTAL DESC

- No Iinternet

- No cell phone
- No laptop

- No ear buds

- No emaill

Advanced SQL — Sheryl M. Larsen, Inc.

Lessons Learned From SQL Performance

Reviews:
Lack of Use of Powerful New and Old SQL Features
Misuse of SQL
Using Wrong Type of Temp Table

Non-Optimal Index Design
Seriously Delayed Filtering
Access Paths Gone Wild
Excessive Sorting

Performance Structures Missing
Stage 2 Predicates in Frozen SQL

© Sheryl M. Larsen, Inc. 2000-2023

NOtes: The Lessons Learned from SQL Performance Review presentation
divulges discoveries and recommendations from various SQL performance
review assignments. Come see if you have similar SQL performance issues
and get the instructions on how to fix them. Issues discussed include non-
optimal index design, access paths gone wild, Stage 2 predicates, misuse of
SQL, excessive sorting, delayed filtering, lack of implementation of powerful
new SQL features.

Advanced SQL — Sheryl M. Larsen, Inc.

Static SQL Dynamic SQL

V41— 251 GROUP BY

V1-26

V2 380 1 ROW
V4 — 7 Created Global Temp Tables
V4 — 25 Table Expressions

V4 - 520 WITH UR

V5 —951 CASE Expressions

V6 — Declared Temp Tables

V7 — FETCH FIRST n ROWS

V8 — | SELECT INTO with ORDER BY
V8 — 545 Common Table Expressions
V8 — - Multi-row Fetch

V8 — <. Materialized Query Tables

V9 —69 EXCEPT/INTERCEPT

V9 — 61 MERGE/MRUNCATE

ﬁ/'.ﬂ91— RANK/DENSE_RANK/ROW_NUMBER

NOtes: Some use of SQL technology but still used CURSORSs for fetching 1 ROW
with ORDER BY.

Advanced SQL — Sheryl M. Larsen, Inc.

Intermediate.

SQL Skill
Range

Level Assessment = YOU CAN FULLY UNDERSTAND THE FEATURE AND PROPER USE OF:

You think SQL is a new energy drink
Simple SELECT statements, WITH clause, ORDER BY

WHERE clauses, BETWEEN, LIKE, IN(list), =, >=, >, <, <=, <>, NOT IN(list),
NOT LIKE, NOT BETWEEN

Table joins (inner, outer, full), UNION, UNION ALL, CONCAT, static CURSORs,
FOR UPDATE OF, ROW_NUMBER

noncorrelated and correlated subqueries, EXISTS, NOT EXISTS, FETCH
FIRST x ROWS ONLY, OPTIMIZE FOR x ROWS

Indexable, Stage1 and Stage 2 predicate evaluation, multirow
FETCH/INSERT, GET DIAGNOSTICS, Scalar full SELECT,

Table expressions/common table expressions, GROUP BY, HAVING, IS NOT
DISTINCT FROM, EXCEPT/INTERCEPT

CASE expressions, Global Temporary Table (GTT), Declared Temporary
Table (DTT), Dynamic Scrollable cursors, SEQUENCE columns

Queries involving > 10 tables, INSERT within SELECT, Star Schema, Snow
Flake, GROUP BY expression, IDENTITY columns

MQT (Materialized Query Tables), Recursive SQL, UNION in Views, Native
SQL Stored Procedures, > 20 SQL Functions, DENSE_RANK, RANK

Codes effective and efficient SQL applying performance rules and knows
when to use each appropriately

-
(=]

IHad ne: Sherii

s Db2 Up?

:
%u@ f%ﬁges
A AT bd K /I AT N_ ALV AN
1600 1
1400
1200
1000 1 : : : : : : : : iRl ' : : :
T soo BRIl """ """ 58 (NN TEE N
JEORE RSN SN SR BR RS RE 55 SN w SR SR TR RS S
sl HH H § 1Hn
400 1 ‘ ‘ ‘ ‘ """"""""""
= ARAALAN
w&m A*A/:Mft gL~V) M‘q
000 0900 18:00 0300 1200 2100 0600 1500 0000 0900 18
06/25/12 07/09/12 07/23/12 08/06/12 08/20/12 09/03/12 09/17/12 10/01/12
TIME OF DAY
M APPLzIIP ' DISTSRB [IRLMSRB ' DBM1SRB ™ MSTR SRB
B APPLGPCPEIDISTTCB B IRLMTCB M DBM1TCB M MSTR TCB
= DIST zIIP B IRLM zIIP M DBM1zIP M MSTRzIIP
2817-603 INTVLS: 00:00-End
Local Time WEEKS: 06/25/12 - 10/01/12
Notes:

Advanced SQL — Sheryl M. Larsen, Inc.

(2) Data - SXL Query Tuning PROD Static/PLAN_TABLE_Q

[2) Task Navigator ~
= O |(& "PLAN_TABLE.QUER 52

al@~ Co i =
Botae| = Olbls muamo

[& Configuration | 5 Validal « | >
Connection: | PRODDB2P

Run method: | JDBC

Run options:
[Refresh explorer view after scri
7] Open new connection when s

On Success
© Commit after each statemen
) Commit on completion of s

« rIT—
COALESCE (SEX.
TX_SUB.MCR_D_EL
TX_SUB.LAST_CHN
TX_SUB.EMPLY_ST.
TSEO.EMPL_OCC_D
M CIMP.TB_TXN_SUB
ON TX_SUB.TXN_T
TX_MSTR.SUB_ID
MRTL.MRTL_STAT_
SEX ON SEX.SEX_
CIMP.TB_TXN_S
& Configurat AND TSEC.TXN_
(= Database C CIMP.TB_TXN_F|
€3 BIRT CI FSD.TXN_TS =
& 1ICMML (TX_MSTR.TXN,
&4 15TEDB TX_SUB.SUB_ID| |
&3 ISTEDB. -

< [, »

[Properties | 71 SQUResult 52—

&4 TECSDI b =Rl

Type query expressic Status | Resultl |

Status & GRP_EFF_DT
© Failed .. 1999-07-01
© Failed . 1999-07-01

v/ Succeeded o .. 1999-08-01

B B R

) Overview of Diagram

of Selected Node

Description of Selected (5]
Node

Displays information about the

node that is highlighted in the
diagram.

® queryblock

Attributes

Boe&i%ke

= Name
Output Cardinality
Cumulative Total Cost
Cumulative IO Cost
Cumulative CPU Cost
Runtime Parent Query Bloc
Do at Open
Times

.

lmn_wm._snr_cnl —omaam)
3 <5

STMT_ID CPU EXECS ELAPSED GETPAGES EXAMINED ROWS PROCESSED STAT_SORT STAT_INDX STAT_RSCN

1022787 4705.7 5258 4722.46 729,475,051 298,690,230 2629 0 283543230 5606

© Sheryl M. Larsen, Inc. 2000-2023

Advanced SQL — Sheryl M. Larsen, Inc.

Removed Bad Scalar Subquery

@QUETYMOWHUISTEIUTISIaN Y4

Estrewntenmplemented
September 19th

USE COUNT

GETPAGE -> 642

SELECT 'Y'
FROM ABCP.TB_BAD ADDR ADDR
INNER JOIN
ABCP.TB_GRP_ELEC_ONLY XGRP
ON XGRP.GRP_ID = ADDR.GRP_ID
INNER JOIN ABCP.TB_SUB_CONT SUB
ON SUB.SUB_ID = ADDR.SUB_ID
AND SUB.GRP_ID DR.GRP_ID
WHERE ADDR.ADDR RSLY g
AND XGRP.EMPR ID =
AND (SUB.SUB_CONT TERM DT > (CUR
DATE - 90 DAYS))
CH FIRST 1 ROW ONLY

.00%

Performance rule violations usually result in increased CPU or I/O, time to

fix the mistake, and ultimately, a cost to the business unit.

What will the cost be? Depends on the mistake and the frequency of the

mistake.

The following presentation will show real case studies of the actual cost of

the mistakes.

Bad Query Fixed

S B I R . e 1+
H H .i. H : H : 2.0
: L. B . B :
LRV ERL P T, T B 200 -
A% el h Jx ;l L & > 3 ﬁ

' 0'6 1500 00:00 09-0(8000 0900 18:00 03.00 12.00 2100 O

2 08/06/12 08/20/12 09/03/12 09/1r/12

MID De

-

Advanced SQL — Sheryl M. Larsen, Inc.

10/01/12
10/01/72

10/15/12

10/29/12

o
f-]ﬂ-;/::'l:-./: Vs

s - =

S

11/12/12

A,

13

Misuse has a cost for:;
JOINSs

Subqueries
LEFT JOINs

GLOBAL TEMPORARY TABLEs

© Sheryl M. Larsen, Inc. 2000-2023

Advanced SQL — Sheryl M. Larsen, Inc.

14

» \When detail row, infermation IS required
» CLASS_ID, TIME_ID, PHONE_NO

» What Students Have the Same Classes as any given
student?

SELECT SSS.SID, SSS.CLASS_ID, SSS.TIME_ID
FROM SMLU_STUDENT SCHED
,SMLU_STUDENT_SCHED SSS Self Join'th g:,t.
WHERE SSS.CLASS_ID = .CLASS_ID
AND SSS.TIME ID = .TIME_ID class/ t'me g
AND SSS.SID <> .SID

AND SSS.SID NOT IN(list challenged student IDs)
AND .SID = :challenged-sid

© Sheryl M. Larsen, Inc. 2000-2023

NOtes: Joins are very good at giving lots of detail from either table.

Advanced SQL — Sheryl M. Larsen, Inc.

» WWhen detail row: information is not required
» Unique SIDs only

» What Students Have at least one of the same Classes
as a given student?

SELECT .SID
FROM SMLU_STUDENT_SCHED
WHERE .SID NOT IN(list challenged student IDs)
AND EXISTS
(SELECT ‘TRUE OR FALSE’
FROM SMLU_STUDENT_SCHED SSS
WHERE SSS.CLASS_ID = .CLASS_ID
AND SSS.TIME_ID = .TIME_ID
AND SSS.SID <> .SID
AND SSS.SID = :challenged-sid

© Sheryl M. Larsen, Inc. 2000-2023

NOtes: Correlated subqueries are good at bypassing detalil.

Advanced SQL — Sheryl M. Larsen, Inc.

_SSS.SID

MLU_STUDENT_SCHED

a1

© Shen . Larsen, Inc. 2000-2023

NOtES: DISTINCT should never be used with an INNER JOIN. The INNER JOIN
produces detail and the DISTINCT removes the detail.

Advanced SQL — Sheryl M. Larsen, Inc.

17

SELECT Columns
FROM
a10WEY LeFT Join
ON .COL1= .COL1
WHERE . .COL1 IS NOT NULL

TABX [\ TABY
Exceptions \ Exceptions
!

SELECT Columns
FROM -
WHERE .COL1= .COL1

© Sheryl M. Larsen, Inc. 2000-2023

NOtes . This INNER JOIN is faster than this LEFT JOIN when there are many rows
that do not join. This is because LEFT JOINs have to calculate exceptions
to the JOIN.

Advanced SQL — Sheryl M. Larsen, Inc.

18

]l CALUU VOUloUuo U

Eclared
1

19

CRM Application Package

SRaApIdiAPRIIcaton
DEVEIopmEnt(GUISOUNCET)
treatedialitransactions
equal

= NG mteirrnal perform

5 Aodlieziie;
P NEWZ/C0N

(SELECT DISTINCT

s suniniisie) siztel gritit=se=e

Tagplo Felo)fsh Prejesissile

LEFT JON F IVOSHEXPENSIVEY

I

=l GROUP BY)

NOtes: A problem application consumed computer and people resources when
scaling was attempted.

Business Deadline Driven

. LackiofrS@LL skillfof developersihindenng
PERGIMANGCE

»IVistuse o S@IEfeatures

« Used|Greated Tiemp lablesy Glihsteat ofPDEGIaren b
dfiempiiiabler Digpwhich alloWsHHEEXES) .

SELECT
FROM

NOtES: The most resource intensive program was examined in detail and SQL
misuse was quickly detected.

21

Demand Reduction Initial Refresh

80m Test

smaller is better

1451% Improvement

Seconds

a1

NOteS: This problem program extracted a tremendous amount of sales activity. The
savings depended on the amount of data being extracted. Initial refreshes
for 25% of the sales force were reduced 1451%.

Demand Reduction 6000 Daily Executions

8 sec
e Per Average—

2543% Improveme

B

Created Temp Tables

Declared Temp Tables

NOteS . Smaller daily /hourly refreshes were improved 2543%.

Demand Reduction

106,875

These improvements add up in the course of a day when the program

executes 6,000 times a day.

42,750 CPU Minutes Per Year 1 Off of z/OS

712 CPU Hours Per Year 1 Off of z/OS

Projected
~3,000 Sales
Reps

2008
~2,100 Sales

Advanced SQL — Sheryl M. Larsen, Inc.

25

Four Points of Filtering — DB2

WHERE C.LAST NM LIKE ?
1. Indexable Stage 1 Probe AND #.SEQEN_NR =

2. Stage 1 Index Filtegis
3. Stage 1 Data Filtering*
4. Stage 2

. e first filter to be applied is _ at the 3" point of filtering
Notes: Thefirst fil b lied is LAST_NM LIKE at the 3" point of filteri
(after every index page and ever data page was retrieved).

26

Search F|Iters Delayed

Notes: Themore pages brought in to the Buffer Pool the larger the foot print. This
increases contention and reduces through put.

Add LAST _NM to Index

Indexable Stage 1 Probe
Stage 1 Index Filtekis
Stage 1 Data Filterin
Stage 2

1
2
3
4
I 1
I— LAST NM

. e first filter to be applied is _ at the 3" point of filtering
Notes: Thefirst fil b lied is LAST_NM LIKE at the 3" point of filteri
(after every index page and ever data page was retrieved).

28

+ \WebrApplication' Home Page

yAllfables Partitioned and Clustered by surnrogate
key TABLE%_ SEQEN_ NR

© Sheryl M. Larsen, Inc. 2000-2012

NOtES: Architecting web pages to preload all services has a cost but some times
can be justified.

Advanced SQL — Sheryl M. Larsen, Inc.

29

Web Page Details

during peak season

Upcoming slides dem

a1

NoOtes: The mostexpensive service, P-Search was examined.

P--Search starts with TABLEB

U EXES FROM TABLEC C, TABLEB B,
Y Columns, Noselusiarsel TABLEA A,

WHERE . AST_NM LIKE ?
AND C.SEQEN_NR =

. . B.SEQEN_NR
‘1_ LAST_NM. FIRST_NM

NOteS . Athree table join and DB2 Optimizer starts with TableB and filters LAST_NM
but picks up every SEQEN_NR using lots of random 1/O.

31

Joins to TABLEC

nelzuc— | FROM TABLEC C, TABLEB B,

4 Colurmns, Monelusizral TABLEA A,
ROLE_CD =?

AND C.SEQEN_NR =

B.SEQEN NR

NOteS . The DB2 Optimizer has to choose between a filtering index or a joining index
since the combined index does not exist. All sequence numbers are picked
up using lots of random I/O and then a merge join puts the tables together.

32

Joins last to TABLEA

FROM TABLEB C, TABLEB B,
TABLEAA,
EQEN_NR BETWEEN ? AND ?

b Caollrrir

NOteS: The last table is joined using Nested Loop because the optimizer chose the
join column index instead of the filtering index as no combined index exists
and a local filter is supplied using a TABLEC_SEQEN_NR BETWEEN ?
AND ?. GUAR_DT is not filtered until the 3" point of filtering and then a sort
is issued for the ORDER BY.

33

Solutions for P-Search

(80706,
reductioniperRexecution)

. *‘* ;!Nf’ ' Y FY -. '-v"‘ ";'-/v'"l r"i ~ ’ ;

» GUAR DT DESC.SEQEN.

- After solutions are imple
YNNG PUSEsonds reduced to .2 CPU seconds

al

NOtes: Performance rule violations usually result in increased CPU or I/O, time to
fix the mistake, and ultimately, a cost to the business unit.

What will the cost be? Depends on the mistake and the frequency of the
mistake.

The following presentation will show real case studies of the actual cost of
the mistakes.

Better Start — Index Only Access

no B

e FROM TABLEC C, TABLEB B, TABLEA A,

¢ "JJ‘J”_f"D’, WHERE LAST _NM LIKE ?
Hogeluss AND TABLEB.SEQEN NR BETWEEN ? AND ?

AND C.SEQEN NR= B.SEQEN NR

(AST NM.FIRSTAM.
N v N NR

Index only Access!!

NOteS . Adding SEQEN_NR to the index and manual Predicate Transitive Closure
moves the BETWEEN filter to the 2" point of filtering. Adding SSN_NR to
the index eliminates all random 1/O to the data pages.

35

Much Less Data Joined

o 55 FROM TABLEB C, TABLEB B, TABLEA A,
2 Colurnrs WHERE ROLE_CD =7 AND

| . TABLEC.SEQEN_NR BETWEEN ? AND ?
\ ate L
Honclusts AND C.SEQEN NR=B.SEQEN_NR

< e
=

NOteS . Adding SEQEN_NR to the filtering index allows the joining to be combined.

36

No Sort for ORDER BY

FROM TABLEB C, TABLEB B, TABLEA A,

2 Colurnrls

® GUAR DT
S SEQEN NR

Notes: By adding SEQEN_NR to the index the last step combines the joining,
filtering and sequencing.

37

+Cost CPU & I/O
» Cost time to fix

» Cost 5555555

How much does it cost?

Use joins over subqueries when detail row information is required
Use subqueries over joins when detail row information is not required
Use INNER JOIN over LEFT JOIN when exceptions are not expected or
needed

Use CREATE GLOBAL TEMPORARY TABLE when 100% data is
infrequently accessed

Use DECLARE GLOBAL TEMPORARY TABLE with a clustered index
when DTT is large and data is frequently accessed

© Sheryl M. Larsen, Inc. 2000-2023

NOtes: The cost depends on the multiplier. That's when performance and scalability
issues become evident.

Advanced SQL — Sheryl M. Larsen, Inc.

38

Use of Powerful New and Old SQL Features
Don’t Misuse SQL

Don’t Use the Wrong Type of Temp Table
Create Optimal Index Design

Don’t allow Delayed Filtering
Follow IBM’s 23 SQL Performance Rules

© Sheryl M. Larsen, Inc. 2000-2023

NOtes: Hopefully, you can avoid the mistakes that others have made by following a
few performance rules discussed in this presentation.

Advanced SQL — Sheryl M. Larsen, Inc.

39

Table 8-4 Best practices for query design From IBM Data Virtualization Manager for z/OS

Category

Description

Efficient SQL

Do not code mathematics on columns in predicates.

Sort only on the columns that are needed. No need to
ORDERBY BY EMPNO,LASTNAME when you can ORDERBY
EMPNO.

Watch out for the LIKE predicate. Begins With logic is
indexable. Contains is notindexable. Ends Wi th is not indexible.

Do not code Not Between. Rewrite it as >HV or <HV.

Use Fetch First XX Rows whenever possible.

Make sure cardinality statistics exist for all columns in all tables.

Code Not Exists over Not In. Both are stage 2 predicates but
Not Exists typically outperforms the Not In, especially if the list
is long.

When joining two tables the execution is faster if the larger table
is on the left side of the join.

Code WHERE clauses with columns that have unique or good
indexes.

Prioritize WHERE clauses to maximize their effectiveness. First
code the WHERE column clauses that reference indexed keys,
then the WHERE column clauses that limit the most data, and then

the WHERE clauses on all columns that can filter the data further.

© Sheryl M. Larsen, Inc. 2000-2023

Advanced SQL — Sheryl M. Larsen, Inc.

40

Good coding practice

When looking for a small set of records, try to avoid reading the
full table by using an index and by providing any possible key
values. You can also use more WHERE clauses so that the fetch
goes directly to the actual records.

All Case logic should have an else coded, which eliminates
DB2 returning nulls by default if all the Case conditions are not
met.

Stay away from Not logic if possible.

Minimize the number of times cursors are opened and closed.

Code stage 1 predicates only. Rewrite any stage 2 predicates.

Use FOR FETCH ONLY on all read only cursors.

Reduce the number of rows to process early by using
Sub-selects and WHERE predicates.

Avoid joining two types of columns and lengths when joining two
columns of different data types or lengths. One of the columns
must be converted to either the type or the length of the other
column.

Limit the use of functions against large amounts of data.

© Sheryl M. Larsen, Inc. 2000-2023

Advanced SQL — Sheryl M. Larsen, Inc.

41

Category

Description

Reduce impacts to the DVM server

Do not code functions on columns in predicates.

Minimize the number of times DB2 SQL statements are sent.

Only select the columns that are needed.

Virtualization

Instead of using multi-level views, try to optimize your SQL
queries. Creating views that call other views that call other views
can result in joining to the same table multiple times when you
only need it once. It creates millions of records in an underlying
view where you are interested only in a handful of records.

© Sheryl M. Larsen, Inc. 2000-2023

Advanced SQL — Sheryl M. Larsen, Inc.

42

Speaker: Sheryl Larsen

Email Address:
Sheryl.Larsen@kyndryl.com

Phone: (630) 399-3330

Advanced SQL — Sheryl M. Larsen, Inc.

Thank you and
please share
 With friends!

43

